Answer:
Option A
Explanation:
Given, cross section area of copper wire A=0.01 cm2 =10-6 m2 and tension force.F=22N
Posson's ratio , $\sigma$= 0.32, and Young's modulus Y= $1.1 \times 10^{11} N/m^{2}$
Since,Posson's ratio, $\sigma$= lateral strain/ Longitudinal strain
$\sigma=\frac{\frac{\triangle D}{D}}{\frac{\triangle L}{L}}$ ........(i)
$\because$ Area ,A= $\pi D^{2}$
$\Rightarrow$ $ \frac{\triangle A}{A}=2\frac{\triangle D}{D}$ .......(Iii)
From Eqs,(i) and (ii) , we get
$\Rightarrow$ $ \frac{\triangle A}{A}=2\sigma\frac{\triangle L}{L}$ ........(iiii)
Young's modulus , $Y= \frac{FL}{A\triangle L}$ .......(iv)
From eqs.(iii) and (iv) , we get
$\Rightarrow$ $\frac{\triangle A}{A}$=$\frac{2 \sigma F}{YA}$
Now , putting the given values
$\frac{\triangle A}{A}=\frac{2 \times 0.32 \times 22}{1.1 \times 10^{11} \times 10^{-6}}=12.8 \times 10^{-3}$
$\Rightarrow\frac{\triangle A}{A}$% =$12.8 \times 10^{-3}$=$12.6 \times 10^{-3}$
So, option (a) is correct